Fire Risk Assessment and Mitigation for Semiconductor Process Equipment

Eric Sklar
Member of Technical Staff, Global Product Safety

28 April 2000
Outline

This presentation includes:

- Overview of fire risks
- SEMI S2-93A Fire Protection criteria
- SEMI S2-0200 Fire Protection criteria
- SEMI S14-0200 *Safety Guidelines for Fire Risk Assessment and Mitigation for Semiconductor Manufacturing Equipment*
- Summary
Overview of Fire Risks

Prerequisites for fire:

- Three elements of the “fire triangle”:
 - fuel
 - oxidizer
 - source of ignition

- All three must be:
 - in the same place
 - at the same time
Overview of Fire Risks

Risk is an estimation of the expected loss from a hazard. It is a function of:

- **Severity**
 - The foreseen degree of loss in a particular scenario
 - Expressed on a pre-defined scale

- **Likelihood**
 - The probability that the scenario will occur
 - Expressed as a percentage of the systems per unit time
SEMI S2-93A Fire Protection Criteria

- **Materials**
 - Use of combustible and smoke-generating materials “limited”
 - Separation of flammable and combustible materials from potential ignition sources
 - Combustible materials rated “less than UL 94V-0” limited to < 20% of surface area
 - Circuit boards “UL94V-1 rated or better”
SEMI S2-93A Fire Protection Criteria

- Detection and Suppression
 - Enclosures > 1.4 m3 (50 ft3) “evaluated” for detection systems
 - Detection systems listed or recognized
 - Equipment supplier to “consider” fire suppression.
 - Detection systems capable of interfacing with facility alarm systems
SEMI S2-0200 Fire Protection Criteria

- Risk assessment
 - In keeping with the S2 revision effort, risk is to be assessed and reported
 - Calls for risk assessment of the equipment and of the fire risk reduction features
 - Allows for optional fire risk reduction features to accommodate differing levels of risk acceptance

- Prescriptive components
 - Limited to those the supplier and user communities consider to be common to most equipment
 - Describe how some features, such as detection, are to be provided, but direct the inclusion of such features only if risk assessment finds them necessary.
SEMI S2-0200 Fire Protection Criteria

- Risk reduction
 - Materials of construction
 - noncombustible “wherever reasonable”
 - second choice is materials which do not propagate flame
 - selection based on minimizing fire risk by choice, using appropriate test methods, among the materials suitable for the process needs
 - optional flowchart for selection is included as an Appendix
 - hazards from materials of construction may be reduced, such as by
 - barriers separating combustible materials from sources of ignition
 - use of suppression systems
Risk reduction

- Process chemical hazards
 - consideration of substitution of nonflammable process chemical for flammable
 - hazards from process chemicals may be reduced, such as by
 - controlling mixing of chemicals which can react with each other
 - controlling chemical temperatures
SEMI S2-0200 Fire Protection Criteria

- Risk reduction
 - Engineering controls
 - interlocks prevent power and chemical flows
 - that could present unacceptable risk
 - when detection or suppression is inactive
 - control of smoke by exhausting it from the cleanroom
 - may be used when risk is presented by the spread of products of combustion
SEMI S2-0200 Fire Protection Criteria

- Risk reduction
 - Fire detection and suppression
 - included only if indicated by risk assessment
 - components suitable for use in the process equipment and certified by an accredited testing laboratory
 - installed in accordance with appropriate standards
 - capable of interfacing with facility systems
 - may be specified by equipment supplier but provided by equipment user
SEMl S2-0200 Fire Protection Criteria

- Risk reduction
 - Fire detection and suppression
 - shutdown equipment as quickly as safety considerations permit upon detection of fire
 - prevent additional use of equipment if detection or suppression system is not operating properly
SEMI S2-0200 Fire Protection Criteria

- Risk reduction
 - Fire detection and suppression
 - remain active
 - during maintenance
 - if equipment control system fails
 - when other hazardous energies are locked out
 - when EMO is activated
SEMI S2-0200 Fire Protection Criteria

- Risk reduction
 - Fire detection and suppression
 - Warnings and safe work practices for detection and suppression system to be provided
 - Maintenance and test procedures to be provided
 - Environmental effects of suppression systems to be documented
SEMI S14-0200: Safety Guidelines for Fire Risk Assessment and Mitigation

- Purpose
 - provide consideration for assessing and mitigating fire risks
 - to be used for both design and assessment of equipment
 - recommend traditional risk management hierarchy:
 - elimination
 - engineering controls
 - administrative controls
 - warnings
 - work practices
 - Result of applying this Safety Guideline is a report of residual fire risk
SEMI S14-0200

Scope

- process, measurement, test, and assembly equipment, used within fab cleanroom or its recirculating air stream
- applies to fire risks originating within the equipment that could lead to damage to the equipment, other equipment, products or the facility
Limitations

- no acceptance criteria for residual risk are established
- does not specify which mitigation methods to use or rate the relative merit of various methods
- apply to the protection of property, not of personnel
- applies to equipment when used as specified
- does not apply to equipment subjected to external fire
- not intended for use as regulations, which take precedence
Risk Assessment: Overview
- performed for each identified hazard
- includes analysis of contributing, causal and mitigating factors
- includes other reviews and certifications of components, but considers special needs because of cleanroom use
- considers dependence of risk on conditions of use
SEMI S14-0200

Risk Assessment: Fuels
- Materials of construction
 - all components, from knobs to equipment enclosure walls
 - may be grouped for assessment
 - assessment considers:
 - size
 - quantity and distribution of similar components
 - material properties
 - exposure to oxidizers
 - exposure to ignition sources
Risk Assessment: Fuels
- Process chemicals
 - Includes
 - all chemical for intended use (process and maintenance)
 - flammable and combustible waste
 - auxiliary fluids, such as vacuum pump oil
 - assessment considers:
 - state, quantity, concentration, temperature
 - available flows and pressures for externally-supplied chemicals
 - material properties
 - exposure to oxidizers
 - exposure to ignition sources
Risk Assessment: Oxidizers

- most common is air
 - should be assumed available, unless deliberately excluded
- some materials of construction
 - act as oxidizers or provide oxidizers when heated
- process chemicals
 - same considerations as described for process chemicals which are fuels
 - examples: oxygen, fluorine, hydrogen peroxide
Risk Assessment: Internal sources of ignition
- electrical ignition energy available
 - in normal operation (such as heaters, static electricity, lasers)
 - from use, wear, misassembly (such as connectors, power strips)
 - from single-point failure (such as transformers, short circuits)
Risk Assessment: Internal sources of ignition
- chemical (exothermic reactions)
 - process recipes
 - inadvertent mixing of process chemicals
 - between process chemicals and materials of construction
 - between released chemicals (such as pyrophoric gases or wastes) and air
Risk Assessment: Internal sources of ignition
 – sudden changes in process conditions
 • rapid compression of gas mixtures
 • rapid increases in temperature
 – mechanical friction
SEMI S14-0200

- Risk Assessment: Procedure for each hazard (step 1)
 - identify and describe:
 - hazard
 - mechanism
 - foreseen losses
 - identify aggravating, contributing and mitigating factors
 - assign a Severity for each foreseen loss
Risk Assessment: Severity Groupings

<table>
<thead>
<tr>
<th>Severity Group</th>
<th>Equipment Physical Damage</th>
<th>Equipment Loss of Use</th>
<th>Facility Loss of Use</th>
<th>Environmental and Real Property Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Catastrophic</td>
<td>Loss of entire piece of equipment</td>
<td>One year</td>
<td>One week</td>
<td>Lasting facility or environmental impact</td>
</tr>
<tr>
<td>2) Severe</td>
<td>Loss of major subsystem</td>
<td>One month</td>
<td>One day</td>
<td>Temporary facility or environmental impact</td>
</tr>
<tr>
<td>3) Moderate</td>
<td>Loss of minor subsystem</td>
<td>One week</td>
<td>One shift</td>
<td>Limited to the equipment, but requiring more than routine cleanup</td>
</tr>
<tr>
<td>4) Minor</td>
<td>Non-serious equipment loss</td>
<td>One day</td>
<td>Less than one shift</td>
<td>Requiring routine cleanup but not external reporting</td>
</tr>
</tbody>
</table>
Risk Assessment: Procedure for each hazard (step 2)
- identify and describe factors that effect foreseen frequency
- assign a Likelihood for each foreseen mechanism and loss
Risk Assessment: Likelihood Groupings

<table>
<thead>
<tr>
<th>Likelihood Group</th>
<th>Expected Frequency (% of systems per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Frequent</td>
<td>More than 1%</td>
</tr>
<tr>
<td>B) Likely</td>
<td>More than 0.2%, but not more than 1%</td>
</tr>
<tr>
<td>C) Possible</td>
<td>More than 0.04%, but not more than 0.2%</td>
</tr>
<tr>
<td>D) Rare</td>
<td>More than 0.02%, but not more than 0.04%</td>
</tr>
<tr>
<td>E) Unlikely</td>
<td>Not more than 0.02%</td>
</tr>
</tbody>
</table>
SEMI S14-0200

Risk Assessment: Procedure for each hazard (step 3)
- identify Risk, based on Severity and Likelihood
- report:
 - Severity, Likelihood, and Risk for each mechanism and loss
 - rationale used to select Severity and Likelihood groupings
Risk Assessment: Risk Categories

<table>
<thead>
<tr>
<th>Severity</th>
<th>Likelihood</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Critical</td>
<td>B</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>2</td>
<td>Critical</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>4</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
<td>Slight</td>
</tr>
</tbody>
</table>
Risk Mitigation: Overview

- Can be achieved by reducing risk of having a fire, or by reducing the loss from a fire, if it occurs

- Preference hierarchy
 - should be followed when equally-applicable options are available
 - may be over-ruled by design and use constraints

- Mitigation techniques should be chosen based on assessed risk
Risk Mitigation: Fuels

- Materials of construction
 - lowest risk obtained with noncombustible materials
 - noncombustible materials are not available for all uses
 - other materials should be
 - selected, using appropriate test methods, to minimize risk
 - minimized in mass and distribution
SEMIS14-0200

Risk Mitigation: Fuels and Oxidizers

- Process chemicals
 - may be possible to reduce risk by
 - changing chemicals or
 - reducing the quantities or pressures
 - risk may be reduced by limiting the factors described above in Risk Assessment
Risk Mitigation: Sources of ignition

- Risk may be reduced by:
 - limiting number of sources of ignition
 - limiting the energy of the sources
 - separating them from fuels (materials of construction and chemicals) by:
 - barriers
 - distance
Risk Mitigation: Exhaust, enclosures and barriers

- Exhaust may reduce risk by
 - reducing damage by removing combustion products
 - reducing concentrations of fuels and oxidizers

- Enclosures and barriers may reduce risk by
 - separating fuels, oxidizers and sources of ignition
 - limiting the spread of fire
 - limiting the spread of combustion and decomposition products
SEMIS14-0200

Risk Mitigation: Detection and suppression
- Criteria closely resemble those in SEMI S2-0200
Summary

- Overview of fire risks
- SEMI S2-93A
 - Few, but prescriptive criteria
- SEMI S2-0200
 - Incorporation of risk as basis for mitigation measures
 - Prescriptive criteria for most common measures
Summary

- SEMI S14-0200
 - Extensive discussion of risk factors
 - Prescribed risk assessment procedure and criteria
 - Discussion of risk mitigation techniques
 - reduce likelihood of a fire
 - reduce the loss if a fire occurs